Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 163-176, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258639

RESUMO

The WRKYs are a group of plant-specific transcription factors that play important roles in defense responses. In this study, we silenced 2 GmWRKY33B homologous genes using a bean pod mosaic virus (BPMV) vector carrying a single fragment from the conserved region of the GmWRKY33B genes. Silencing GmWRKY33B did not result in morphological changes. However, significantly reduced resistances to Pseudomonas syringae pv. glycinea (Psg) and soybean mosaic virus (SMV) were observed in the GmWRKY33B-silenced plants, indicating a positive role of the GmWRKY33B genes in disease resistance. Kinase assay showed that silencing the GmWRKY33B genes significantly reduced the activation of GmMPK6, but not GmMPK3, in response to flg22 treatment. Reverse transcriptase PCR (RT-PCR) analysis of the genes encoding prenyltransferases (PTs), which are the key enzymes in the biosynthesis of glyceollin, showed that the Psg-induced expression of these genes was significantly reduced in the GmWRKY33B-silenced plants compared with the BPMV-0 empty vector plants, which correlated with the presence of the W-boxes in the promoter regions of these genes. Taken together, our results suggest that GmWRKY33Bs are involved in soybean immunity through regulating the activation of the kinase activity of GmMPK6 as well as through regulating the expression of the key genes encoding the biosynthesis of glyceollins.


Assuntos
Dimetilaliltranstransferase , Soja , Soja/genética , Resistência à Doença/genética , Bioensaio , Inativação Gênica
2.
Nutrients ; 15(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37111139

RESUMO

Soybean products have nutrients, dietary fiber, and phytoalexins beneficial for cardiovascular and overall health. Despite their high consumption in Asian populations, their safety in Western diets is debated. We conducted a dose-escalating clinical trial of the safety and tolerability of soybean products in eight older adults (70-85 years) with obesity. Whole green soybean pods grown under controlled conditions were processed to flour (WGS) at the United States Department of Agriculture using common cooking techniques such as slicing and heat treatment. WGS incorporated into food products was consumed at 10 g, 20 g, and 30 g/day for one week at each dose. The gastrointestinal outcomes, clinical biomarkers, and adverse events were evaluated. We explored the stimulation of phytoalexin (glyceollin) production in live viable soybean seeds (LSS-G). We compared the compositions of WGS and LSS-G with commercial soybean flour and its fermented and enzymatically hydrolyzed forms. We found that although 30 g WSG was well-tolerated, and it made participants feel full. Our processing produced glyceollins (267 µg/g) in LSS-G. Processing soybean flour decreased the iron content, but reduced the oligosaccharides, which could attenuate flatulence. Providing soybean flour at <30 g/day may be prudent for overall health and to prevent the exclusion of other food groups and nutrients in older adults with obesity.


Assuntos
Obesidade , Idoso , Humanos , Fibras na Dieta , Oligossacarídeos/efeitos adversos , Sementes
3.
Plants (Basel) ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771629

RESUMO

Glyceollins, isoflavonoid-derived antimicrobial metabolites, are the major phytoalexins in soybean (Glycine max). They play essential roles in providing resistance to the soil-borne pathogen Phytophthora sojae and have unconventional anticancer and neuroprotective activities that render them desirable for pharmaceutical development. Our previous studies revealed that the transcription factors GmMYB29A2 and GmNAC42-1 have essential roles in activating glyceollin biosynthesis, yet each cannot activate the transcription of all biosynthesis genes in the absence of a pathogen elicitor treatment. Here, we report that co-overexpressing both transcription factors is also insufficient to activate glyceollin biosynthesis. To understand this insufficiency, we compared the transcriptome profiles of hairy roots overexpressing each transcription factor with glyceollin-synthesizing roots treated with wall glucan elicitor (WGE) from P. sojae. GmMYB29A2 upregulated most of the WGE-regulated genes that encode enzymatic steps spanning from primary metabolism to the last step of glyceollin biosynthesis. By contrast, GmNAC42-1 upregulated glyceollin biosynthesis genes only when overexpressed in the presence of WGE treatment. This is consistent with our recent discovery that, in the absence of WGE, GmNAC42-1 is bound by GmJAZ1 proteins that inhibit its transactivation activity. WGE, and not GmMYB29A2 or GmNAC42-1, upregulated the heat shock family gene GmHSF6-1, the homolog of Arabidopsis HSFB2a that directly activated the transcription of several glyceollin biosynthesis genes. Our results provide important insights into what biosynthesis genes will need to be upregulated to activate the entire glyceollin biosynthetic pathway.

4.
J Agric Food Chem ; 69(50): 15165-15174, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34875172

RESUMO

Apart from the physiological effects of glyceollins, information regarding their tissue distribution is scarce in the literature. Thus, the aim of this study is to clarify the distribution of glyceollins in rat organs. Glyceollins I and III were orally administered to Sprague-Dawley rats (1.0 mg/kg) with daidzein as control, and their accumulations in organs were investigated by liquid chromatography-time-of-flight/mass spectrometry (LC-TOF/MS). Glyceollins accumulated in intact and conjugated forms in circulatory organs with a Tmax of 0.5 h, in the following order of descending preference: liver, kidney, heart, lung, soleus muscle, and abdominal aorta. The accumulation of hydrophobic glyceollin I was more than 1.5 times higher than that of III. In contrast, daidzein and hydroxy equol were detected only in the liver and kidneys at lower concentrations (1/100 times) than those of glyceollins. In conclusion, prenylated isoflavones, glyceollins, were preferentially distributed in circulatory organs as intact, sulfated, or glucuronidated forms up to 6 h after the intake.


Assuntos
Isoflavonas , Animais , Pterocarpanos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
J Agric Food Chem ; 69(25): 7057-7063, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152141

RESUMO

Apart from the physiological functions of soybean phytoalexins, the production sites in soybeans remain unknown. In this study, the dynamic production of phytoalexins, glyceollins, in germinating soybeans inoculated with Aspergillus oryzae was visually investigated using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging. During a 3-day sensitization using a fungus, glyceollins I-III were produced in germinating soybeans (from 0.03 mg/g for glyceollin III to 0.96 mg/g for glyceollin I). Imaging analysis provided visual evidence that glyceollins were produced only in the regions of seed coat and germinated root of the soybeans, while no production was observed in other regions, including the cotyledons. In contrast, their precursor, isoflavone, was distributed throughout the soybean. The evidence that the inoculation of the inactivated fungi also caused glyceollin production at the seed coat led us to speculate that glyceollins could be produced in the region of soybean attached to the fungus body.


Assuntos
Isoflavonas , Pterocarpanos , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Ayurveda Integr Med ; 12(1): 43-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531194

RESUMO

BACKGROUND: The high-fat, high-fructose diet (HFFD) provokes overnutrition and inflammation directly, mainly through Toll-like receptors (TLRs). Soybean (Glycine max L.) contains isoflavone that can be transformed into glyceollin by microbial and physical stimuli. Glyceollin possesses many beneficial effects on health. OBJECTIVE: This study evaluates the beneficial effect of soybean extract elicited by Saccharomyces cerevisiae and light (ESE) on dendritic cells (DCs) profile and naïve T cells in HFFD mice. MATERIALS AND METHODS: Female Balb/C mice were fed with HFFD for 24 weeks then orally administered with simvastatin 2.8 mg/kg BW or ESE 78, 104, and 130 mg/kg BW at the last four weeks. The expression of splenic CD11c+TLR3+, CD11c+TLR4+, NFκB+, CD11c+IL-17+, CD11c+TNF-α+, CD4+CD62L+, and CD8+CD62L+ subsets was measured by flow cytometry. The molecular docking has been measured using Pyrx 0.8, displayed in PyMol and Biovia Discovery Studio. RESULT: HFFD significantly increased CD11c+TLR3+, CD11c+TLR4+, NFκB+, CD11c+IL-17+, CD11c+TNF-α+ expression and decreased CD4+CD62L+ and CD8+CD62L+ (p < 0.05) compared to normal diet (ND) groups. ESE reduced CD11c+TLR3+, CD11c+TLR4+, thereby decreasing NFκB+, as well as decreased the CD11c+IL-17+, CD11c+TNF-α+, and restores CD4+CD62L+ and CD8+CD62L+ subsets in HFFD mice. Glyceollin II exhibited the best binding affinity with an average energy of -7.3 kcal/mol to TLR3 and -7.9 kcal/mol to TLR4. CONCLUSION: The bioactive compound in ESE act synergistically to modulate TLR3/TLR4 activation, reduced NFκB, IL-17, and TNF-α, and restores naïve T cells expression in HFFD mice. ESE was a favorable candidate to mitigate chronic inflammation.

7.
Biomolecules ; 9(12)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817312

RESUMO

To determine the mechanism of action of the effects of phytoalexins in soybeans, we analyzed α-glucosidase inhibition kinetics using Michaelis-Menten plots and Lineweaver-Burk plots. The results showed that the type of inhibition with glyceollin was competitive, that of genistein was noncompetitive, that of daidzein was uncompetitive, and luteolin showed a mixed mode of action. The Ki values were determined using a Dixon plot as glyceollin, 18.99 µM; genistein, 15.42 µM; luteolin, 16.81 µM; and daidzein, 9.99 µM. Furthermore, potential synergistic effects between glyceollin and the three polyphenols were investigated. A combination of glyceollin and luteolin at a ratio of 3:7 exhibited synergistic effects on α-glucosidase inhibition, having a combination index (CI) of 0.64244, according to the CI-isobologram equation. Collectively, these results showed that a combination of glyceollin and luteolin has the potential to inhibit α-glucosidase activity via a synergistic mode of inhibition.


Assuntos
/enzimologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Sesquiterpenos/farmacologia , Sinergismo Farmacológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genisteína/farmacologia , Isoflavonas/farmacologia , Luteolina/farmacologia , Proteínas de Plantas/farmacologia , Pterocarpanos/farmacologia , alfa-Glucosidases/metabolismo , Fitoalexinas
8.
Plant J ; 96(5): 966-981, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30195273

RESUMO

Phytoalexin glyceollins are soybean-specific antimicrobial compounds that are derived from the isoflavonoid pathway. They are synthesized by soybean in response to extrinsic stress such as pathogen attack or injury, thereby conferring partial resistance if synthesized rapidly at the site of infection and at the required concentration. Soybean produces multiple forms of glyceollins that result from the differential prenylation reaction catalyzed by prenyltransferases (PTs) on either the C-2 or C-4 carbon of a pterocarpan glycinol. The soybean genome contains 77 PT-encoding genes (GmPTs) where at least 11 are (iso)flavonoid-specific. Transcript accumulation of five candidates GmPTs was increased in response to Phytophthora sojae infection, suggesting their role in phytoalexin synthesis. The induced GmPTs localize to plastids and display tissue-specific expression. We have in this study identified two additional GmPTs: an isoflavone dimethylallyltransferase 3 (IDT3); and a glycinol 2-dimethylallyl transferase GmPT01. GmPT01 prenylates (-)-glycinol at the C-2 position, localizes in the plastid, and exhibits root-specific gene expression. Furthermore, its expression is induced rapidly in response to stress, and is associated with a quantitative trait loci linked with resistance to P. sojae. Based on these results, we conclude that GmPT01 are possibly one of the loci involved in conferring partial resistance against stem and root rot disease in soybean.


Assuntos
Dimetilaliltranstransferase/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Pterocarpanos/biossíntese , Dimetilaliltranstransferase/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas , Metiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Pterocarpanos/metabolismo , Alinhamento de Sequência , /metabolismo
9.
J Food Sci Technol ; 55(5): 1850-1858, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29666538

RESUMO

Alginate oligosaccharides (AOs) are linear oligosaccharides with alternating sequences of mannuronic acid (M) and guluronic acid (G) residues. AOs can be used as a safe elicitor to induce glyceollins, which have many human health benefits, in soybean seeds. In this research, four AO fractions with different chemical structures and molecular weights were separated, purified, and then characterized by NMR spectroscopy and ESI-MS. With a 4,5-unsaturated hexuronic acid residue (△) at the non-reducing terminus, the structures of these four AO fractions were △G, △MG, △GMG and △MGGG, which exhibited glyceollin-inducing activities of 1.2339, 0.3472, 0.6494 and 1.0611 (mg/g dry weight) in soybean seeds, respectively. The results demonstrated that a larger molecular weight or a higher G/M ratio might correlate with a higher glyceollin-inducing activity. Moreover, the alginate disaccharide △G could be introduced as relatively safe and efficient elicitor of high glyceollin content in soybeans.

10.
Mol Cell Endocrinol ; 471: 15-21, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28483703

RESUMO

Glyceollins (Glys) are produced by soy plants in response to stress and are known for their anti-estrogenic activity both in vivo and in vitro in cancer cell lines as well as peripheral tissues. Glys can also exhibit non-estrogen receptor (ER) mediated effects. The effects of Glys on gene expression in the brain are still unclear. For this study, 17-ß estradiol (E2) or placebo slow-release pellets were implanted into ovariectomized CFW mice followed by 11 days of exposure to either Glys or vehicle i.p. injections. We then examined the female mouse brain transcriptome using paired-end RNA sequencing (RNA-Seq) on the Illumina GAIIx platform. The goal of this study was to compare and contrast the results obtained from RNA-Seq with the results from our previous whole brain microarray experiment, which indicated that Glys potentially act through both ER-mediated and non-ER-mediated mechanisms, exhibiting a gene expression profile distinct from E2-treated groups. Our results suggest that the transcripts regulated by both E2 and Glys alone or in combination annotated to similar pathway maps and networks in both microarray and RNA-Seq experiments. Additionally, unlike our microarray data analysis, RNA-Seq enabled the detection of treatment effects on low expression transcripts of interest (e.g., prolactin and growth hormone). Collectively, our results suggest that depending on the gene, Glys can regulate expression independently of E2 action, similarly to E2, or oppose E2's effects in the female mouse brain.


Assuntos
Encéfalo/metabolismo , Estradiol/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pterocarpanos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
11.
Molecules ; 22(8)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749423

RESUMO

Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer activities and is not economical to synthesize. Here, we tested a range of source tissues from soybean, in addition to chemical and biotic elicitors, to understand how to enhance the bioproduction of glyceollin I. Combining the inorganic chemical silver nitrate (AgNO3) with the wall glucan elicitor (WGE) from the soybean pathogen Phytophthora sojae had an additive effect on the elicitation of soybean seeds, resulting in a yield of up to 745.1 µg gt-1 glyceollin I. The additive elicitation suggested that the biotic and chemical elicitors acted largely by separate mechanisms. WGE caused a major accumulation of phytoalexin gene transcripts, whereas AgNO3 inhibited and enhanced the degradation of glyceollin I and 6″-O-malonyldaidzin, respectively.


Assuntos
Antineoplásicos/farmacologia , Pterocarpanos/farmacologia , Sesquiterpenos/farmacologia , Vias Biossintéticas , Cobre/farmacologia , Fungos/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosídeos/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Hidrólise , Isoflavonas/metabolismo , Pterocarpanos/biossíntese , Pterocarpanos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/farmacologia , Sementes/metabolismo , Nitrato de Prata/farmacologia , /genética , Esporos Fúngicos , Tiadiazóis/farmacologia , Fitoalexinas
12.
Phytomedicine ; 27: 39-51, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28314478

RESUMO

BACKGROUND: While current therapies for osteoporosis focus on reducing bone resorption, the development of therapies to regenerate bone may also be beneficial. Promising anabolic therapy candidates include phytoestrogens, such as daidzein, which effectively induce osteogenesis of adipose-derived stromal cells (ASCs) and bone marrow stromal cells (BMSCs). PURPOSE: To investigate the effects of glyceollins, structural derivatives of daidzein, on osteogenesis of ASCs and BMSCs. STUDY DESIGN: Herein, the osteoinductive effects of glyceollin I and glyceollin II were assessed and compared to estradiol in ASCs and BMSCs. The mechanism by which glyceollin II induces osteogenesis was further examined. METHODS: The ability of glyceollins to promote osteogenesis of ASCs and BMSCs was evaluated in adherent and scaffold cultures. Relative deposition of calcium was analyzed using Alizarin Red staining, Bichinchoninic acid Protein Assay, and Alamar Blue Assay. To further explore the mechanism by which glyceollin II exerts its osteoinductive effects, docking studies of glyceollin II, RNA isolation, cDNA synthesis, and quantitative RT-PCR (qPCR) were performed. RESULTS: In adherent cultures, ASCs and BMSCs treated with estradiol, glyceollin I, or glyceollin II demonstrated increased calcium deposition relative to vehicle-treated cells. During evaluation on PLGA scaffolds seeded with ASCs and BMSCs, glyceollin II was the most efficacious in inducing ASC and BMSC osteogenesis compared to estradiol and glyceollin I. Dose-response analysis in ASCs and BMSCs revealed that glyceollin II has the highest potency at 10nM in adherent cultures and 1µM in tissue scaffold cultures. At all doses, osteoinductive effects were attenuated by fulvestrant, suggesting that glyceollin II acts at least in part through estrogen receptor-mediated pathways to induce osteogenesis. Analysis of gene expression demonstrated that, similar to estradiol, glyceollin II induces upregulation of genes involved in osteogenic differentiation. CONCLUSION: The ability of glyceollin II to induce osteogenic differentiation in ASCs and BMSCs indicates that glyceollins hold the potential for the development of pharmacological interventions to improve clinical outcomes of patients with osteoporosis.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Estradiol/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Pterocarpanos/farmacologia , Células-Tronco/efeitos dos fármacos , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Fitoestrógenos/farmacologia , Estados Unidos
13.
J Pharm Sci ; 105(2): 972-981, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26296158

RESUMO

Glyceollins are phytoalexins produced in soybeans under stressful growth conditions. On the basis of prior evaluations, they show potential to treat multiple diseases, including certain cancers, Type 2 diabetes, and cardiovascular conditions. The aim of the present study was to expand on recent studies designed to initially characterize the intestinal disposition of glyceollins. Specifically, studies were undertaken in Caco-2 cells to evaluate glyceollins' effects on apical efflux transporters, namely, MRP2 and BCRP, which are the locus of several intestinal drug-drug and drug-food interactions. 5- (and 6)-carboxy-2',7'-dichloroflourescein (CDF) was used to provide a readout on MRP2 activity, whereas BODIPY-prazosin provided an indication of BCRP alteration. Glyceollins were shown to reverse MRP2-mediated CDF transport asymmetry in a concentration-dependent manner, with activity similar to the MRP2 inhibitor, MK-571. Likewise, they demonstrated concentration-dependent inhibition of BCRP-mediated efflux of BODIPY-prazosin with a potency similar to that of Ko143. Glyceollin did not appreciably alter MRP2 or BCRP expression following 24 h of continuous exposure. The possibility that glyceollin mediated inhibition of genistein metabolite efflux by either transporter was evaluated. However, results demonstrated an interaction at the level of glyceollin inhibition of genistein metabolism rather than inhibition of metabolite transport.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Propionatos/farmacologia , Pterocarpanos/farmacologia , Quinolinas/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células CACO-2 , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Proteína 2 Associada à Farmacorresistência Múltipla
14.
Int J Environ Res Public Health ; 13(1): ijerph13010017, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26703673

RESUMO

The goal of the present study was to determine the effects of glyceollins on intestinal ABCC2 (ATP Binding Cassette C2, multidrug resistance protein 2, MRP2) and ABCG2 (ATP Binding Cassette G2, breast cancer resistance protein, BCRP) function using the Caco-2 cell intestinal epithelial cell model. Glyceollins are soy-derived phytoestrogens that demonstrate anti-proliferative activity in several sources of cancer cells. 5 (and 6)-carboxy-2',7'-dichloroflourescein (CDF) was used as a prototypical MRP2 substrate; whereas BODIPY-prazosin provided an indication of BCRP function. Comparison studies were conducted with genistein. Glyceollins were shown to inhibit MRP2-mediated CDF transport, with activity similar to the MRP2 inhibitor, MK-571. They also demonstrated concentration-dependent inhibition BCRP-mediated efflux of BODIPY-prazosin, with a potency similar to that of the recognized BCRP inhibitor, Ko143. In contrast, genistein did not appear to alter MRP2 activity and even provided a modest increase in BCRP efflux of BODIPY-prazosin. In particular, glyceollin inhibition of these two important intestinal efflux transporters suggests the potential for glyceollin to alter the absorption of other phytochemicals with which it might be co-administered as a dietary supplement, as well as alteration of the absorption of pharmaceuticals that may be administered concomitantly.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Células CACO-2/efeitos dos fármacos , Genisteína/farmacologia , Intestinos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/efeitos dos fármacos , Pterocarpanos/farmacologia , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
15.
J Steroid Biochem Mol Biol ; 150: 17-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25771071

RESUMO

An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers. We demonstrate through estrogen response element luciferase and phosphorylation-ER mutants that the effects of glyceollin arise from mechanisms distinct from conventional endocrine therapies. We show that glyceollin suppresses estrogen response element activity; however, it does not affect ER-alpha (α) phosphorylation levels. Additionally we show that glyceollin suppresses the phosphorylation of proteins known to crosstalk with ER signaling, specifically we demonstrate an inhibition of ribosomal protein S6 kinase, 70 kDa (p70S6) phosphorylation following glyceollin treatment. Our data suggests a mechanism for glyceollin inhibition of ERα through the induced suppression of p70S6 and demonstrates novel mechanisms for ER inhibition.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Pterocarpanos/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/genética , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Elementos de Resposta , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
16.
J Agric Food Chem ; 62(43): 10475-84, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25296697

RESUMO

The isoflavonoid composition of an ethanolic extract of fungus-treated soybean sprouts was strongly altered by a combined acid/heat treatment. UHPLC-MS analysis showed that 6a-hydroxy-pterocarpans were completely converted to their respective, more stable, 6a,11a-pterocarpenes, whereas other isoflavonoids, from the isoflavone and coumestan subclasses, were affected to a much lesser extent (loss of ∼15%). Subsequently, mixtures enriched in prenylated 6a-hydroxy-pterocarpans (pools of glyceollin I/II/III and glyceollin IV/VI) or prenylated 6a,11a-pterocarpenes (pools of dehydroglyceollin I/II/III and dehydroglyceollin IV/VI) were purified, and tested for activity on both human estrogen receptors (ERα and ERß). In particular, the response toward ERα changed, from agonistic for glyceollins to antagonistic for dehydroglyceollins. Toward ERß a decrease in agonistic activity was observed. These results indicate that the introduction of a double bond with the concomitant loss of a hydroxyl group in 6a-hydroxy-pterocarpans extensively modulates their estrogenic activity.


Assuntos
Estrogênios/química , Extratos Vegetais/química , Pterocarpanos/química , Temperatura Alta , Humanos , Cinética , Estrutura Molecular , Receptores de Estrogênio/química
17.
Rev. bras. plantas med ; 16(2,supl.1): 309-315, 2014. graf
Artigo em Português | LILACS | ID: lil-719458

RESUMO

Hidrolato é o líquido resultante da extração de óleo essencial de plantas aromáticas por arraste a vapor apresentando em sua composição importantes metabólitos do vegetal de origem. O objetivo deste trabalho foi avaliar a atividade indutora de fitoalexinas, bem como as propriedades antifúngica e antibacteriana do hidrolato de carqueja (Baccharis trimera). Foram testadas as concentrações de 1, 10, 25, 50, 75 e 100%. A atividade indutora de fitoalexinas foi avaliada em mesocótilos estiolados de sorgo e em cotilédones de soja. A atividade antifúngica foi avaliada sobre a germinação de esporos de Pseudocercospora vitis, Cercospora kaki e Hemileia vastatrix. A atividade antibacteriana foi avaliada sobre a multiplicação de Xanthomonas campestris pv. passiflorae, Erwinia carotovora e Bacilllus subtilis. O hidrolato não induziu a produção de fitoalexinas em soja, mas promoveu esta atividade em sorgo a partir da concentração de 50%. Atividade antibacteriana ocorreu para os três isolados a partir da concentração de 75%, com inibição de até 87,9% sobre B. subtilis. O hidrolato não mostrou atividade antifúngica.


Hydrolate is a product resulting from the extraction of a plant essential oil using steam distillation, which presents major metabolites of such plants in its composition. The objective of this work was to evaluate the phytoalexin induction and the antifungal and antibacterial activities of the Baccharis trimera hydrolate, in the concentrations of 1, 10, 25, 50, 75 and 100%. Phytoalexin induction was evaluated in etiolated sorghum mesocotyl and in soybean cotyledons. The antifungal activity was evaluated on the spore germination of Pseudocercospora vitis, Cercospora kaki and Hemileia vastatrix, while the antibacterial activity was evaluate on the Xanthomonas campestris pv. passiflorae, Erwinia carotovora and Bacillus subtilis multiplication. The hydrolate did not induce the phytoalexin synthesis in soybean, but it provided activity in sorghum in the concentration of 50% and above. Antibacterial activity occurred for the three isolates tested at the concentrations of 75 and 100%, with inhibition up to 87.9% for B. subtilis. The hydrolate showed no antifungal activity.


Assuntos
Óleos Voláteis/análise , Antibacterianos/análise , Agroquímicos/isolamento & purificação , Baccharis/efeitos adversos , Antifúngicos/análise
18.
Rev. bras. plantas med ; 15(2): 208-216, 2013. graf, tab
Artigo em Português | LILACS | ID: lil-677028

RESUMO

Foram desenvolvidos três experimentos com o objetivo de avaliar o potencial de preparados a base de calêndula (Calendula officinalis L.) na indução de fitoalexinas em cotilédones de soja, na indução de mecanismos de resistência em frutos de morango, e o efeito fungistático sobre Botrytis cinerea in vitro. O delineamento experimental foi inteiramente casualizado com quatro repetições, para 15 tratamentos resultantes da combinação de três formas de extração (extrato alcoólico, infusão, e maceração) em cinco concentrações (zero; 1,25; 2,5; 5; e 10%). Os resultados demonstram que os preparados de C. officinalis apresentaram capacidade de indução das fitoalexinas gliceolinas em cotilédones de soja. Na aplicação dos preparados em pós-colheita de morangos ocorreu alteração no teor de flavonóides, bem como a atividade da enzima FAL foi estimulada pela aplicação dos extratos; no entanto, não foi constatado o controle de podridão dos frutos. O efeito fungistático foi observado na extração por maceração em todas as suas concentrações reduzindo o crescimento do fungo B. cinerea in vitro sendo que, a partir de 2,5%, observou-se inibição total. A extração por infusão também apresentou resposta positiva na redução do crescimento de B. cinerea, com melhor resposta na concentração de 10% do preparado.


Three experiments were carried out to evaluate the potential of calendula (Calendula officinalis L.) extracts for phytoalexin induction in soybean cotyledons, resistance mechanism induction in strawberry fruits and fungistatic effect on Botrytis cinerea in vitro. Experimental design was completely randomized with 15 treatments resulting from the combination of three forms of extraction (alcohol extract, infusion and maceration) at five concentrations (zero, 1.25, 2.5, 5 and 10%). Results showed that C. officinalis extracts could induce the phytoalexins glyceollins in soybean cotyledons. In the application of extracts during the strawberry postharvest, there was a change in flavonoid content, as well as in the activity of the enzyme PAL, which was stimulated by the application of extracts; however, fruit rot control was not noted. Fungistatic effect was observed for the extract obtained by maceration at all used concentrations, reducing in vitro the growth of the fungus B. cinerea, and from 2.5% there was total inhibition. The extract obtained by infusion also showed a positive response in reducing B. cinerea growth, with better response at the concentration of 10% extract.


Assuntos
Extratos Vegetais/análise , Botrytis/classificação , Calendula/efeitos adversos , Doenças das Plantas/prevenção & controle , Plantas Medicinais/efeitos adversos , Fragaria/classificação
19.
Arq. Inst. Biol. (Online) ; 77(1): 91-98, jan-mar, 2010. graf
Artigo em Português | VETINDEX, LILACS | ID: biblio-1382054

RESUMO

O gênero Saccharomyces tem sido usado como indutor de resistência ou para controle biológico em muitos patossistemas. Neste trabalho objetivou-se a indução de fitoalexinas em mesocótilos de sorgo e cotilédones de soja pela levedura Saccharomyces boulardii na forma do produto comercial Floratil (Merck) (com 2 x 106 células/mg produto comercial - pc) e massa de células obtidas de meio líquido YEPG (primeiramente com 14 dias de cultivo e, posteriormente, com 7, 14, 21, 28 e 35 dias) ambos em concentrações de 0,005; 0,05; 0,5; 5; 15 e 25 mg/mL, além de filtrado desse meio nas concentrações de 0,01; 0,1; 1; 5; 10 e 20%. Como tratamentos controle utilizou-se água e S. cerevisiae (25 mg/mL de pc) para soja e água e acibenzolar-S-metil (ASM) (125 mg i.a./L) para sorgo. Em soja os três produtos apresentaram efeito dose-dependente, com ajustes de equações de 1° grau e R2 de 0,64; 0,94 e 0,98 não tendo efeito do tempo de cultivo da levedura na indução de fitoalexinas. Em sorgo apenas o filtrado e Floratil tiveram efeito dose-dependente com equação de 1° grau e R2 de 0,63 e 0,94 respectivamente e obteve-se nos diferentes dias de cultivo R2 de 0,62 com a massa de células somente. Portanto, pode-se evidenciar o potencial indutor de fitoalexinas dos produtos a base de S. boulardii para ensaios com indução de resistência em patossistemas envolvendo sorgo e soja.


Saccharomyces yeast compounds have been used as a resistance elicitor or for biological control in many pathosystems. Thus, the aim of this research was to verify the induction of phytoalexins in sorghum mesocotyls and soybean cotyledons by using Saccharomyces boulardii in the form of the commercial product Floratil (Merck) (with 2 x 106 cells/mg) and yeast-cell mass obtained from liquid culture in YEPG medium (with 7, 14, 21, 28 and 35 days old), both at concentrations of 0.005, 0.05, 0.5, 5, 15 and 25 mg/mL, as well as the filtrate of this medium in concentrations of 0.01, 0.1, 1, 5, 10 and 20%. The control treatments consisted of distilled water and S. cerevisiae (25 mg of commercial product per mL) for the soybean tests and distilled water and acibenzolar-S-methyl (125 mg of active ingredient per L) for the sorghum tests. In soybeans the three tested S. boulardii products presented a dose-dependent effect with R2 of 0.64, 0.94 and 0.98 for the culture filtrate, cell suspension and commercial product of S. boulardii, respectively, with no effect of culture time of yeasts on phytoalexin induction. In sorghum, only the culture filtrate and Floratil presented a dose-dependent effect, with R2 of 0.63 and 0.94, respectively, and the cell suspension of S. boulardii showed dependence of culture time with R2 of 0.62. Thus, S. boulardii and its derivates induce phytoalexins and have potential to be used as an elicitor for assays with induction resistance in pathosystems involving sorghum and soybean plants.


Assuntos
Soja/fisiologia , Cotilédone/microbiologia , Sorghum/fisiologia , Saccharomyces boulardii
20.
J Nematol ; 27(3): 292-303, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19277292

RESUMO

Transcription of genes encoding several enzymes and the activity of some of these enzymes of the phenylpropanoid pathway leading to synthesis of chemical and physical barriers for defense of plants against root pathogens was estimated in susceptible and resistant soybean infected with Heterodera glycines race 3 or with Meloidogyne incognita race 3. Transcription of genes encoding phenylalanine ammonia lyase (PAL) and the activity of this enzyme increased in resistant, but not susceptible, soybean cultivars after nematode infection. Likewise, transcription of the gene encoding 4-coumaryl CoA ligase and activity of this enzyme were enhanced in resistant, but not susceptible, soybean cultivars after nematode infection. Activity of PAL decreased in susceptible soybean after H. glycines or M. incognita infection. Transcription of enzymes later in the phenylpropanoid pathway leading to glyceollin synthesis increased in both resistant and susceptible soybean in response to nematode infection; the increase was greater in resistant cultivars. These results suggest possible reasons for the rapid induction of glyceollin synthesis immediately after infection of resistant soybean cultivars with H. glycines or M. incognita and the failure of this response in infected, susceptible soybean cultivars. Nematode infection had no effect on the activity of enzymes in the branch of the pathway leading to lignin synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...